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Cayley tree approximation for the Potts model? 

I G Enting and C Domb 
Wheatstone Physics Laboratory, King’s College, Strand. London WC2R 2LS. U K  

Received 21 March 1975 

Abstract. An approximation to the partition function of the standard Potts model is 
constructed by considering only the dominant tree-like configurations. This approxima- 
tion gives a good representation of the positions of the non-physical singularities obtained 
from low-temperature series, and it is also possible to relate the behaviour of the approxima- 
tions to the order of the Potts model transitions. It is found that for the two-dimensional 
lattices studied the transition is first-order for q > 4, whereas for the three-dimensional 
lattices it is first-order when q > 2. 

1. Introduction 

The question of the nature of the transition in the standard Potts model and how this 
depends on lattice dimensionality has proved extremely difficult to resolve. On the 
simple quadratic lattice Baxter (1973) has shown that the transition is continuous for a 
q-state model with q 6 4. For three-dimensional lattices Kim and Joseph (1975) used 
a series method that indicates a first-order transition for q = 3,4 .  . . . Unfortunately 
this method breaks down in two dimensions, so we cannot test its validity against the 
known results. Golner (1973) used a recursion technique on a continuous analogue 
of the Potts model and predicted a first-order transition for q = 3 in both two and 
three dimensions. An c expansion by Amit and Shcherbakov (1974) indicated a first- 
order transition for q = 3 in three dimensions, but again the method cannot be com- 
pared with the known results for two dimensions. Series expansions using conventional 
methods of analysis are biased towards continuous transitions, but the results have been 
inconclusive (Ditzian and Oitmaa 1974, Enting 1974a, Ditzian 1974, Straley 1974). 
The mean-field approximation predicts a first-order transition for all dimensions, while 
a modified mean-field approximation (Alexander 1974) predicts a continuous transition 
for all dimensions. 

In this situation any information which might help to elucidate the nature of the 
transition is welcome. We shall in the present paper generalize the approach which 
Domb and Guttmann (1970) used for the Ising model to the standard Potts model. 
These authors started from the low-temperature expansion for the logarithm of the 
partition function, lnZ,  in terms of weak lattice constants, and assumed that the 
dominant contribution is due to  tree-like configurations for which the weightings of the 
lattice constants can be calculated exactly. For the king model (q = 2) this approxima- 
tion provided a reasonable mimic of the true partition functions and a good approxima- 
tion to the positions of non-physical and physical singularities for different lattices in 
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two and three dimensions ; it could not yield finer details of the transition like critical 
exponents. One might likewise hope that for the standard Potts model (general q)  the 
approximation could provide a mimic for the partition function adequate to differentiate 
between a first-order and a continuous transition. 

We have found that for q > 2 the approximate partition function gives a good 
representation of the non-physical singularities, except near the negative real axis. Apart 
from increasing our knowledge of the configurational properties of the model, a study of 
the non-physical singularities is important for series analysis. When studying the 
physical singularity the series can be transformed so that the non-physical singularities 
become less important (Guttmann and Thompson 1969, Guttmann et a1 1970). 

To obtain a reasonable value for the physical singularity needs more care since it is 
very sensitive to the value of lattice constant data. This was indicated by Domb and 
Guttmann (1970), who showed how by a small adjustment of a key parameter an under- 
standing could be achieved of the structure of the physical singularity near the Curie 
point. A more detailed discussion, including an assessment of the effect of compact 
lattice constants, is given in a recent paper by one of us (Domb 19751. When q > 2 we 
find that we are able to interpret the behaviour of the order of the transition as a function 
of q and lattice dimension. 

The basic calculations are given in 0 2. Section 3 discusses the non-physical singu- 
larities and compares the approximate predictions with the results of series analysis. 
Section 4 studies the behaviour of the physical singularity and shows how the results 
can be interpreted to predict the order of the transition. 

- - 1 ‘1u vu  . . .  vu 

‘1u q 2  ylZl.4 . . .  ‘12u 

v u  ‘1% ‘12 . . .  ‘1% 

- v u  v2u  . . . q2 - 

2. Approximate partition function 

where 
U = exp( - B J )  

‘1 = exp( - a h / 2 ) .  
( 2 )  

(3) 
In zero field the eigenvalues have been obtained by Potts (1952) (see also Domb 1974). 

To calculate the determinant of V - i l  we perform the following operations that 
leave the determinant unchanged. Subtract row 2 from rows 3 to y ;  add columns 
3 to y to column 2 ; this gives 
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In regions of physical interest the largest eigenvalue is 

= B1+ q2[ (q -  2 ) ~  + 13 + [ 1 - q2[(q-  2 ) ~  + l]}' + 4((1- l)q2u2] l"); ( 5 )  

the second largest is (in most regions) 

,Iz = 31 + q 2 [ ( q -  2)u + 11  - [ ( l  - q 2 [ ( 4 -  2)u + 1])2 + 4(y- l)q2u21] 1'2). (6) 

The other eigenvalues are 

i 3  = i4 = R, = $(1 - U ) .  (7) 
These eigenvalues can be used to construct an approximate partition function for other 
lattices. 

The method is a simple generalization of the method used by Domb and Guttmann 
(1970) and is based on approximating a weak graph expansion for the high-density 
partition function : 

The assumption made is that the behaviour is dominated by the contributions fron 
Cayley trees. The fc(,u, U) for Cayley trees of I sites is approximated by (Ax/Ay)' where 
1i.J > 1iLxI >> /other eigenvalues of VI. The field term of V is re-intepreted to allow for 
interaction of sites in the tree with unperturbed sites outside the Cayley tree so that 

(9, q 2  = u ' - 2 p  

,u = exp( -W) (10) 
where the lattice has coordination number z and field energy H for sites not in state 1. 
The sum over Cayley trees of i sites is approximated by an assumed dependence d/P. 
The constants 11 are estimated from the results of direct enumerations. For the square, 
triangular, sc, BCC, FCC lattices they have been given by Domb and Guttmann. Using a 
factor l /z  for convenience of scale we have estimated for additional lattices 

V I Z  2: 1.45 diamond 

v / z  2: 1.1 honeycomb. 

We begin by expanding the eigenvalues to leading order to that 

i., = 1 +  . . .  
E., = $[ 1 + ( q  - 2)u]  + 
E., = $(1 -U)+ . . . . 

To this order we have IE.,/ > 1i21 > li31 for IL( = 1, only outside the circle of centre 
U = (1 - 4)-  and radius (4  - 1)- in the complex plane. Since we really require I& >> / A 3 /  
this estimate provides only a rough indication of the region in which the approximations 
break down. The fact that IA21 2 /,I3/ near the boundaries of this circle means that using 
A 3 / A 1  in (8) is not likely to  give a particularly accurate representation of I n Z  near 
U = (1 - -q ) - l .  

The singularities of (8) are expected at 

i , / A 1  = l / v .  (14) 
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Using (8) and (9) we obtain as a first estimate 

l / v  5 u'-2[1 + ( q - 2 ) u ] .  

We refer to this as approximation I. The results are tabulated in table 1. 
For q = 2 the spin f Ising model approximation I predicts singularities equally 

spaced on a circle centred on the origin and, as pointed out by Domb and Guttmann, 
this provides a rather crude estimate to the true behaviour. The results shown in table 1 
show that approximation I improves with increasing q. Using the full expressions for 
A I ,  A 2 ,  equation ( 1 4 )  leads to 

v - ( i  + ~ 2 ~ ) ~ ~ ~ - 2 [ i + ( ~ - 2 ) ~ 1 + ( i  + v ) 2 p u y q -  i ) + v p 2 u 2 ~ - 4 [ 1  + ( q - 2 ) u ~ 2  = 0. ( 1 6 )  

We refer to  this as approximation I1 and give the results in table 1 for p = 1. 

Table 1. Comparison of approximation estimates of singularities with results from series 
expansions. The real positive roots of two-dimensional models are known exactly. Estimates 
for FCC and sc. q = 3, are obtained from earlier work using high-temperature expansions. 
Because of the probability of first-order transitions the estimates of the transition temperature 
in three dimensions are only approximate. Estimates of the non-physical singularities are 
obtained from Pade approximants to  the logarithmic derivative of the spontaneous order. 

Lattice I' 4 Series/Exact 

FCC 

Triangular 

BCC 

Diamond 

Square 

sc 

23.8 

8.4 

15.2 

5.8 

5.06 

10.5 

3 0.77 
0.54 f 0.44i 
0.20 f 0.66i 

- 0.1 7 f 0.67i 
-0.51 fO.48i 
- 0.69 f 0.20i 

0.02 f 0.52i 
3 0.532 

- 0.4 f 0.4i 
3 0.68 

0.28 fO.51i 
- 0.23 k0.53i 
- 0.58 f0.21i 

- - 0.39 f 0.25i 

- 0.32 f 0.29i 

- 0.26 f 0.27i 

- 0.23 fO.25i 

0.03 f 0.49i 
- 0.50 f 0.24i 

0.04 f 0.49i 
- 0.49 f 0.23i 

0.03 f 0.47i 
- 0.49 f 0.22i 

3 -0.4 

3 0.366 

1 4 J 

5 0.309 

3 0.586 

4 -0.56 

5 -0.55 

Approxima- Approxima- 
tion I tion I 1  
(equation (15)) (equation (16)) 

0.69 1 
0.57 f0.39i 
0.24 f0.66i 

- 0.17 k 0.70i 
-0.57f0.50i 
- 0.92 f0.05i 

0.07k0.55i 
-0433f0.16i 

0.33f0.50i 
- 0.26 f 0.59i 
- 0.86 f0.73i 

- 0.68 f 0.1 5i 

0.528 

0.588 

0.36 

0.356 
- 0.68 f 0.1 51 

0.323 
-0.41 f0.31i 

-0.31 f0.30i 

0.06 f 0.53i 
-0.81 fO.1Oi 

0.09 f 0.49i 
- 0.57 f 0.2% 

- 0.10 f 0.46i 
-0.49f0.28i 

0,300 

0,501 

0.470 

0449 

0,885 
0.55 f 0.44i 
0.21 k0.65i 

- 0.17 f0.66i 
-0.51 k0.48i 
-0.71f0.17i 

0.69 f0.07i 
0.03 f 0.51 i 

-0.54f0.25i 

0.28 f 0.51 i 
- 0.23 f 0.53i 
-0.61 f0.21i 

0.44 
- 0.38 f 0.24i 

0.52 f 0.06i 
-0.38 f 0.25 

- 0.3 1 f 0.25i 

- 0.27 f 0.24i 

0.03 f 0.49i 
- 0.53 _+ 0.23i 

0.05 f 0.46i 
- 0.46 f 0.24i 

0.05 f 0 4  
-0.41 +0.23i 

0,695 

0.46 

0.400 

0.606 

0.560 

0.529 
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3. Location of non-physical singularities 

Here we compare the location of the non-physical singularities as estimated from series 
expansions with the locations of the complex roots of (15) and (16). We find that most 
of the singularities are predicted by equation (16) with an accuracy comparable to the 
accuracy with which estimates can be obtained from series. This is not true for singulari- 
ties near the negative real axis since in this region /&I 2: 1A31. 

The estimated positions of the singularities depend slightly on which function is 
analysed. The results given in table 1 are obtained from Pade approximants to the 
logarithmic derivative of the spontaneous order since these series gave the most regular 
estimates. 

The low-temperature series for q = 3 are known to U'' on the triangular lattice and 
u4' on the FCC lattice (Enting 1974a). The method of partial generating functions 
(Enting 1974b) has been used to give series to u3' on the BCC, u 1  on the diamond and 
U'' on the honeycomb lattice. For general q Straley and Fisher (1973) give square lattice 
series to u I 3  and Straley (1974) gives sc lattice series to uZ4. The zero-field partition 
function series of Kihara et a1 (1954) (to u16 on the square lattice) have not been used 
here. We have not considered the honeycomb lattice because it is a special case, the 
low-temperature honeycomb partition function corresponding to the high-temperature 
triangular partition function by a duality relation. Since the triangular lattice three- 
state Potts model with antiferromagnetic interaction has a unique ground state, we 
can expect an order-disorder transition on the triangular lattice for a negative value of 
the high-temperature expansion variable. (The solution of Kim and Joseph (1974) has 
a root at x 2: -0.8 where x is the high-temperature expansion variable 
(1 -u)/[l + ( q -  l)u].) By duality this should give a root near -0.8 on the negative 
U axis for the honeycomb lattice. This special system will be considered elsewhere. 

Equation (15) (approximation I) gives z - 1 roots on a roughly circular arrangement 
around the origin. There are also 2 -  1 roots of equation (16) (approximation 11) in a 
similar pattern around the origin. The exceptions are for q = 2, z even, when the correct 
expansion variable is u2 and i z  - 1 roots occur. 

The results given in table 1 show that there is a slight improvement in approximation 
I1 as q increases. The results near the negative real axis are always rather poor, which is 
to be expected since I).,[ 2: IEL31. For most lattices all the non-physical singularities are 
on or near the negative axis for q = 2, so we cannot make valid comparisons between 
q = 2 and q = 3. The exception is the FCC lattice which has a pair of singularities with 
Re(u) > 0 for q = 2.  Domb and Guttmann found U = 0.074kO.533i from series and 
0.105 +0.516i from their approximation. For high values of q we find better agreement, 
except near the negative real axis. 

4. Physical singularity 

In $ 2  we obtained equation (16) whose roots correspond approximately to the sin- 
gularities of the Potts model. When examining the roots we find that there are no 
positive roots for q < 4 in two dimensions and q < 2 in three dimensions. Since these 
ranges are those in which continuous transitions are expected, we examine the behaviour 
more closely. Since the left-hand side of (16) is positive for U = 0 and positive for large U, 

there will be an even number of roots for U > 0. The dividing case between two roots 
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and no roots is the double root given by 

2 V  - = 0  
d U  

whence 

( 2  -2)+(q  -2 ) ( z  - 1)u -z(q-  1)u2 - (z -2)u'- * -(q - 2 ) ( 2 2 -  3)u'- - ( q  - 2 ) 2 ( 2  - l)UZ 

+(q-  1 ) ( ~ - 4 ) ~ ' - ( q - 2 ) ( q - l ) ( ~ - 2 ) ~ ~ + ~  = 0. (18) 

For any given q the U value can be substituted into (14) to give 1%. Equation (18) 
corresponds to equation (17) of Domb and Guttman (1970) who referred to this limiting 
value of v as v*.  Equations (14) and (18) serve to define v*(q,z). We have plotted 
v*(q,z)/z for z = 3, 4, 6, 8, 12 and 1.8 < q < 6 in figure 1. (I t  should be noted that 
v*(2,8) "- 14.8 and not 15.6 as given by Domb and Guttmann.) 

Figure 1. A plot of \"(4. z ) / z  against 4 for various z values. The denominator z is purely for 
convenience in plotting the graph. Values of v i z  for actual lattices are shown (vertical lines) 
The intersections with the appropriate v* lines are shown as crosses. These intersections 
occur for q 2 4 in two dimensions and q = 2 in three dimensions. 

The vertical lines on figure 1 give the v / z  values for various lattices, so the inter- 
sections with the v*(q,  z ) / z  lines, for appropriate z ,  give q values below which there are 
no roots on the positive axis. 

To interpret the behaviour of v* (q ,  z) in terms of the order of the transition we return 
to eqcations (5 ) ,  (6) and (14) and consider p values other than 1. The general behaviour 
in the p-U plane is shown in figure 2. The line of singularities is the approximation to 
the spinodal curve. For the case 1' > v* shown in figure 2(b) the spinodal curve crosses 
the U axis. Kim and Joseph (1975) show how this type of behaviour can be expected to 
correspond to a first-order transtion in zero field. Presumably the line of first-order 
transitions continues until it terminates with a critical point at some positive field value. 
For v < v* as shown in figure 2(a), the approximate partition function does not predict 
any physical singularity in zero field. Since the behaviour of the Ising model (q  = 2 )  is 
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Figure 2. Behaviour of the spinodal curve from solution of (12) (a)  11 < Y*:  equation (12) 
predicts that the spinodal curve will not cross the H = 0 line. We conjecture that the true 
spinodal curve extends to the U axis and that the transition is continuous; ( h )  v > i s * :  the 
physically meaningful section of the spinodal curve cuts the U axis indicating a first-order 
transition, (c) w = Y * :  since we have no detailed knowledge of the nature of the correction 
terms. using U = v* as the dividing case between first-order and continuous transitions is 
only approximate 

well known, we can confidently predict a continuation of the spinodal curve to a con- 
tinuous transition point on the U axis. As remarked above. v = v* (figure 2(c)) is observed 
to correspond to the boundary between first-order and continuous transitions. Since 
figure 2(a) clearly shows the importance of correction terms near the critical point, taking 
v = v* will give the division between first-order and continuous transitions only 
approximately. 

5. Conclusions 

We have seen that approximating the partition function of the standard Potts model 
by considering only contributions from Cayley trees gives a useful description of the 
model. Apart from representing the position of the non-physical singularities quite 
accurately, the approximation leads to a correlation between lattice properties and 
the order of the Potts model transition. The requirement v < v*(q, 2 )  for a continuous 
transition shows how the combinatorial properties of the lattice relate to the types of 
critical behaviour. At the crudest level we can describe this phenomenon by noting that 
for a given value of the coordination number z ,  the value of v will increase with lattice 
dimensionality. I t  remains to be seen whether other lattices, such as the various second- 
neighbour lattices, will have behaviour that agrees with the pronounced dimension 
dependence shown in figure 1. 
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